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LETTER TO THE EDITOR

Algebraic Bethe ansatz for the one-dimensional Bariev
chain

Huan-Qiang Zhou†‡
CCAST(World Laboratory) PO Box 8730, Beijing 100080, People’s Republic of China

Received 13 January 1997

Abstract. The algebraic Bethe ansatz is formulated for the one-dimensional Bariev chain. As
a consequence, the eigenvectors, eigenvalues and Bariev’s Bethe equations are rederived in a
systematic algebraic way.

The discovery of high-Tc superconductivity has greatly stimulated studies of various electron
lattice models in one dimension [1–8], which are exactly soluble using the coordinate space
Bethe ansatz method [9]. Notably, many physical properties of these models, such as the
one-dimensional (1D) Hubbard model [5], the supersymmetric t-J model [2] and the 1D
Bariev model [6, 10], have been inferred from the Bethe equations. However, it still seems
to be interesting to investigate these models within the framework of the quantum inverse
scattering method (QISM) [9, 11, 12]. This would provide us with more information on
their algebraic structure. At present, the QISM has been successfully applied to the 1D
Hubbard model [7, 13, 14] and to the supersymmetric t-J model [8, 15]. For the 1D Bariev
model, the integrabilty is also established by showing the quantum Yang–Baxter relation
[16]. Therefore, it is desirable to derive Bariev’s Bethe equations using the algebraic Bethe
ansatz technique, as done by Ramos and Martins [14] for the 1D Hubbard model.

This letter addresses this question. Our approach is based on the algebraic Bethe ansatz
technique developed by Tarasov [17], which has recently been extended to apply to the
diagonalization of the 1D Hubbard model [14]. It is found that a novel set of commutation
relations between various elements of the monodromy matrix may be inferred from the
quantum Yang–Baxter relation, which uncover a hidden six-vertex symmetry underlying the
integrability of the model. As a consequence, the eigenvectors, eigenvalues and Bariev’s
Bethe equations are rederived in a systematic algebraic way.

The Hamiltonian of the 1D Bariev periodic chain may be written in the form [6]

H =
N∑
j=1

[(c†j↑cj+1↑ + c†j+1↑cj↑) exp(ηnj+1↓)+ (c†j↓cj+1↓ + c†j+1↓cj↓) exp(ηnj↑)]. (1)

Herec+jα andcjα are, respectively, the creation and annihilation operators of fermions with
spinα(=↑ or ↓) at a sitej andnjα is the density operator.
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As was shown in [16], the Lax operatorLj(λ) takes the form

Lj(λ) = L̃j (λ) ˜̃Lj(λ) (2)

with

L̃j (λ) =


λ exp(η)+ (i − λ exp(η))nj↑ 0 −i

√
1+ exp(2η)λ2cj↑ 0

0 λ+ (i − λ)nj↑ 0 i
√

1+ λ2cj↑√
1+ exp(2η)λ2c

†
j↑ 0 1− (1+ iλ exp(η))nj↑ 0

0 −√1+ λ2c
†
j↑ 0 1− (1+ iλ)nj↑

 (3)

and

˜̃
Lj (λ) =


λ exp(η)+ (i − λ exp(η))nj↓

√
1+ exp(2η)λ2cj↓ 0 0

−i
√

1+ exp(2η)λ2c
†
j↓ 1− (1+ iλ exp(η))nj↓ 0 0

0 0 λ+ (i − λ)nj↓
√

1+ λ2cj↓
0 0 −i

√
1+ λ2c

†
j↓ 1− (1+ iλ)nj↓

 (4)

whereλ denotes the spectral parameter. Indeed, one may check that the quantumR-matrix
satisfying

R(λ,µ)Lj (λ)⊗sLj (µ) = Lj(µ)⊗sLj (λ)R(λ, µ) (5)

does exist. Here⊗s denotes the supertensor product defined by

(A⊗sB)ik,j l = (−1)[P(i)+P(j)]P(k)AijBkl (6)

whereP(1) = P(4) = 0, P (2) = P(3) = 1. The explicit form of theR-matrix may
be found in [16]. Since our aim is to diagonalize the model (1) using the algebraic
Bethe ansatz approach, it is crucial to write down some fundamental commutation relations
between various elements of the monodromy matrixT (λ), which is defined asT (λ) =
LN(λ) . . . L1(λ). From (5) it follows that

R(λ,µ)T (λ)⊗sT (µ) = T (µ)⊗sT (λ)R(λ, µ). (7)

For our purpose, it is convenient to assume that

T (λ) =
(
A(λ) C∗(λ) F ∗(λ)
B∗(λ) Â(λ) C(λ)
F (λ) B(λ) D(λ)

)
(8)

where the operatorsB(λ),B∗(λ) and C(λ)C∗(λ) are two component vectors with
dimensions 1× 2(2× 1) and 2× 1(1× 2), respectively. The operator is a 2× 2 matrix and
the other remaining ones are scalars. Then, it follows from (7) that

B(λ)⊗B(µ) = B(µ)⊗B(λ)r̂(λ, µ)− i

√
(1+ exp(2η)λ2)(1+ µ2)

exp(2η)λ− µ
×[F(λ)D(µ)− F(µ)D(λ)]ξ (9)

D(λ)B(µ) = i
1+ λµ
λ− µ B(µ)D(λ)− i

√
(1+ λ2)(1+ µ2)

λ− µ B(λ)D(µ) (10)

A(λ)B(µ) = i
exp(η)(1+ λµ)
exp(2η)λ− µ B(µ)A(λ)

+
√
(1+ λ2)(1+ exp(2η)λ2)(1+ µ2)(1+ exp(2η)µ2)

(λ− µ)(exp(2η)λ− µ) F(λ)C∗(µ)

−
√
(1+ exp(2η)λ2)(1+ exp(2η)µ2)(1+ λµ)

(λ− µ)(exp(2η)λ− µ) F(µ)C∗(λ)

−i

√
(1+ exp(2η)λ2)(1+ µ2)

exp(2η)λ− µ ξ(B∗(λ)Â(µ)) (11)
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and

Â(λ)⊗B(µ) = i
1+ λµ
λ− µ [B(µ)⊗ Â(λ)]r̂(λ, µ)− i

√
(1+ λ2)(1+ µ2)

λ− µ B(λ)⊗ Â(µ)

−i

√
(1+exp(2η)λ2)(1+µ2)

exp(2η)λ− µ
[
B∗(λ)D(µ)− i

√
(1+λ2)(1+µ2)

λ− µ F(λ)C(µ)

+i

√
(1+ λ2)(1+ exp(2η)µ2)(1+ λµ)√
(1+ exp(2η)λ2)(1+ µ2)(λ− µ) F(µ)C(λ)

]
⊗ ξ (12)

where

ξ = (0, exp(η),−1, 0) (13)

r̂(λ, µ) =


1 0 0 0
0 (exp(2η)−1)µ

exp(2η)λ−µ
exp(η)(λ−µ)
exp(2η)λ−µ 0

0 exp(η)(λ−µ)
exp(2η)λ−µ

(exp(2η)−1)λ
exp(2η)λ−µ 0

0 0 0 1

 . (14)

It should be noted that thêr(λ, µ) ≡ r̂(λ/µ) is nothing but theR-matrix of the symmetric
six-vertex model in the so-called homogeneous gauge used by Jimbo [18], which differs
from the usual symmetric form by a gauge transformation [19]. Here it seems appropriate
to mention that a similar situation also occurs in the 1D Hubbard model, which was first
discovered by Ramos and Martins [14]. It should be stressed that such hidden symmetry
gives an algebraic explanation for the fact that the bare two-body scattering matrix calculated
in the coordinate space Bethe ansatz approach appears in the six-vertex form.

Next we proceed to establish the Bethe eigenvectors. First note that the monodromy
matrix T (λ) is a lower-triangular matrix when acting on the pseudovacuum defined by
aj |0〉 = 0, j = 1, . . . , N . Explicitly, we have

A(λ)|0〉 = (λ exp(2η))N |0〉 D(λ) = |0〉 Âaa|0〉 = λN |0〉 (a = 1, 2) (15)

and

C(λ)|0〉 = C∗(λ)|0〉 = F ∗(λ)|0〉 = 0 Âab|0〉 = 0 (a 6= b = 1, 2). (16)

This implies that one may view the operatorsB(λ),B∗(λ) and F(λ) as the creation
operators on the pseudovacuum|0〉. Keeping this fact in mind and noting the commutation
relations (9), one may conclude that the one-particle state|ψ1(λ1)〉 takes the form

|ψ1(λ1)〉 = B(λ1)F1|0〉 (17)

whereas the two-particle state|ψ2(λ1, λ2)〉 is given by

|ψ2(λ1, λ2)〉 =
[
B(λ1)⊗B(λ2)+ i

√
(1+ exp(2η)λ2

1)(1+ λ2
2)

exp(2η)λ1− λ2

×F(λ1)(ξ ⊗ψ0)D(λ2)

]
F2|0〉. (18)

Here and hereafter,Fn denotes a constant vector with dimension 2n × 1. In general, the
n-particle state may be constructed in a recursive way as follows

|ψn(λ1, . . . , λn)〉 = ψn(λ1, . . . , λn)Fn|0〉 (19)
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where

ψn(λ1, . . . , λn) = B(λ1)⊗ψn−1(λ2, . . . , λn)

+F(λ1)ξ ⊗
n∑
j=2

i

√
(1+ exp(2η)λ2

1)(1+ λ2
j )

exp(2η)λ1− λj
n∏
k=2
k 6=j

i(1+ λkλj )
λk − λj

×ψn−2(λ2, . . . , λj−1, λj+1, . . . , λn)

j−1∏
k=2

r̂k,k+1(λk, λj ). (20)

Taking into account these results and noting the commutation relations (10)–(12), we
conclude that the eigenvalue3(λ, {λj }) of the transfer matrix of the model, which is defined
as the supertrace of the monodromy matrixT (λ), takes the form

3(λ, {λj }) =
n∏
j=1

i(1+ λλj )
λ− λj + (exp(η)λ)2N

n∏
j=1

i(1+ λλj )
exp(η)λ− exp(−η)λj

−λN
n∏
j=1

i(1+ λλj )
λ− λj 3(1)(λ, {λj }, {µα}) (21)

where3(1)(λ, {λj }, {µα}) is the corresponding eigenvalue of an auxiliary inhomogeneous
transfer matrix, which is inherited from the hidden six-vertex symmetry mentioned above.
The final result is as follows,

3(λ, {λj }, {µα}) =
n∏
j=1

i(1+ λλj )
λ− λj + (exp(η)λ)2N

n∏
j=1

i(1+ λλj )
exp(η)λ− exp(−η)λj

−λN
n∏
j=1

i(1+ λλj )
λ− λj

m∏
α=1

exp(−η)λ− exp(η)µα
λ− µα

−λN
n∏
j=1

i(1+ λλj )
exp(η)λ− exp(−η)λj

m∏
α=1

exp(η)λ− exp(−η)µα
λ− µα (22)

provided that the parameters{λj } and{µα} satisfy the Bethe equations,

λ−Nj =
m∏
α=1

exp(−η)λj − exp(η)µα
λj − µα j = 1, 2, . . . , n (23)

n∏
j=1

exp(η)µβ − exp(−η)λj
µβ − λj = −

m∏
α=1

exp(η)µβ − exp(−η)µα
exp(−η)µβ − exp(ηµα)

α, β = 1, 2, . . . , m.

(24)

After a redefinition of the parameters{λj } and {µα}, we may check that our conclusion is
consistent with that obtained by Bariev [6] using the coordinate space Bethe ansatz. Also,
the eigenvalueE of the Hamiltonian (1) is

E = 2
n∑
j=1

(λj + λ−1
j ). (25)

In conclusion, we have presented the algebraic Bethe ansatz for the 1D Bariev chain.
This allows us to construct the eigenvectors, eigenvalues and the Bethe equations in a
systematic algebraic way. Our result is consistent with that obtained by Bariev [6] using the
coordinate space Bethe ansatz method and may be useful in understanding the completeness
of the Bethe eigenvectors.
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